
What if racing legends met on the same track across the time?
F1 Legendary Drivers Performance Analysis System
INFO-I590: Usable AI (2025)
Group: Leo & Zic
This project is a performance analysis system for F1 (Formula One) legendary drivers based on historical data. The system analyzes race data from the Monza circuit between 1985-2024, using machine learning methods to evaluate and rank legendary drivers from different eras.
Core Functionality Implementation | 核心功能实现
1. Data Collection and Preprocessing | 数据采集与预处理
Retrieve historical race data through Ergast F1 API
通过Ergast F1 API获取历史比赛数据Process two different data formats before and after 1995
分别处理1995年前后两种不同格式的比赛数据
Data cleaning and standardization processing
数据清洗和标准化处理
2. Feature Engineering | 特征工程
Average Z-Score | 平均Z-Score
Z-Score variance | Z-Score方差
Best/Worst lap times | 最佳/最差圈速
Median performance | 中位数表现
Lap time decay rate | 圈速衰减率
Outlier ratio | 异常值比例
3. Performance Modeling | 性能建模
Using elastic net regression model, combining the following features | 使用弹性网络回归模型,结合以下特征:
Lap time statistical features | 圈速统计特征
Completion rate | 完赛率
Historical performance | 历史表现
Season factors | 赛季因素
4. Ranking System | 排名系统
Comprehensive evaluation based on | 基于以下因素综合评估:
Model prediction scores | 模型预测得分
Historical results | 历史成绩
Cross-era performance calibration | 跨时代表现校准